Satz des Pythagoras

In einem rechtwinkligen Dreieck gilt: das Quadrat über der Hypotenuse ist gleich der Summe der Quadrate über den beiden Katheteten.

$c^2= a^2+b^2$

Die Seite, die dem rechten Winkel gegenüber liegt, heißt Hypotenuse. Seiten, die dem rechten Winkel anliegen, werden mit Katheten bezeichnet.

 

 

Beispiel: Das Dreieck ABC hat den Winkel $γ = 90°$, die Seite $a = 3 \ cm$ und Seite $b= 4 \ cm$. Berechne die Länge der Seite $c$.

Lösungsweg:

Man erstellt eine Skizze, um die Lage bzw. die Beziehung der Seiten und der Winkel erkennen zu können.

Man kann anhand der Zeichnung sehen, dass die Seite $c$ die Hypotenuse ist, entsprechend sind die Seiten $a$ und $b$ die Katheten.

Somit gilt die Beziehung: $c^2 = a^2+ b^2$.

Für $a$ und $b$ die Werte einsetzen und $c$ ausrechnen:

$c^2= a^2 + b^2$

$c^2= 3^2 + 4^2$

$c^2= 9 + 16$

$c^2= 25$

$\sqrt{c^2}= \sqrt{25}$

$c= 5$

Lösung: die Hypotenuse $c$ ist $5 \ cm$ lang.